In the given figure, the straight lines AB and CD pass through the centre O of the circle. If ∠AOD=75o and ∠OCE=40o, Then (i) ∠CDE (ii) ∠OBE are respectively
A
75oand55o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
50oand25o.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
40oand55o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
40oand75o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B50oand25o. Given−ThediameterCD&anoterextendeddiameterABintersectatthecentreO.TwolinesDB&ABintersectatB.ThechordCEmeetsABatE.∠AOD=75oand∠OCE=40o.Tofindout−(i)∠CDE=?(ii)∠OBE=?Solution−DCisadiameter.So∠DEC=Theangleinasemicircle=90o.∴∠CDE=180o−(∠OCE+∠DEC)(anglesumpropertyoftriangles)=180o−(40o+90o)=50o.Again∠AOD=∠COB=75oand∠AOC=∠DOB(bothpairsareverticallyoppositeangles).i.e∠AOC+∠DOB=2∠DOBSo∠AOD+∠COB+(∠AOC+∠DOB)=360o(completeangle)⟹2∠DOB=360o−(∠AOD+∠COB)=360o−(75o+75o)=210o⟹∠DOB=105o.NowinΔODB∠OBE=180o−(∠DOB+∠CDE)(anglesumpropertyoftriangles)⟹∠OBE=180o−(105o+50o)=25o.So∠CDEand∠OBEarerespectively50oand25o.Ans−OptionB.