In the given figure, △ABC is right-angles at B, in which AB=15cm and BC=8cm. A circle with centre O has been inscribed in △ABC. The value of x, the radius of the inscribed circle is
A
6cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
9cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 3cm Given−ABCisarightΔwith∠ABC=90o.AcirclewithcentreOhasbeeninscribedwithinΔABC.ThecircletouchesAB,BC&ACatP,Q&Rrespectively.AB=15cmandBC=8cm.Tofindout−Theradiusofthegivencircle=x=?Solution−ABCisarightΔwithACashypotenuse.So,applyingPythagorastheorem,wegetAC=√AB2+BC2=√152+82cm=17cmNowweknowthattheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.∴∠OQB=90o=∠OPB.AlsoOP=OQ=xradiiofthesamecircle).∴OPBQisasquare.i.ePB=BQ=x.NowAP=ARandCQ=CRsincetangetstoacirclefromapointareequal.ButAP=AB−PB=15−x=ARandCQ=BC−BQ=8−x=CR.∴AR+CR=AC=(15−x)+(8−x)=AC=17⟹23−2x=17⟹x=3cm.Sotheradiusoftheinscribedcircleis3cm.Ans−OptionC.