R.E.F. Image.
Given ΔPQR is right angle triangle with QR=9cm
& PR−PQ=1cm
then PR=(1+PQ)
squaring both sides
(PR)2=(1+PQ)2=1+(PQ)2+2PQ
(PR)2−(PQ)2=1+2PQ
(QR)2=1+2PQ [PR2=PQ2+QR2]
81−1=2PQ
[PQ=40cm]
now, using Pythagoras theorem. or equation (1) we have
PR−PQ=1
[PR=41cm]
now sinR=PQPR=4041cosR=941=QRPR
then sinR+cosR=4041+941=4941.
sinR+cosR=4941.