The correct option is
B minimum value of f(x) is
−4y=f(x)=ax2+bx+c f′(x)=2ax+bAC=8 units
⇒AO=OC=4 units
Coordinates of A(−4,0),B(?),C=(4,0)
In △ABC
(AC)2=(AB)2+(BC)2
AB=BC ( sides of isosceles triangle)
(AC)2=2(AB)2
64=2(AB)2
(AB)2=32
AB=√32
AB=√16×2
AB=4√2 units
Now In △AOB,△AOB=90o
(AB)2=(OA)2+(OB)2
(A√2)2=(4)2+(OB)2
32=16+(OB)2
(OB)2=16
OB=4
Coordinates of B is (0,−4)
A,B and C lies on curve ax2+bx+c=f(x)=y........(1)
⇒16a−4b+c=0
⇒16a+4b+c=0
c=4
Hence a=1/4,b=0,c=−4
put eq (1)
y=f(x)=14x2−4 option (A)
Minimize e×Δt at point (0,−4), [ clear from the figure]
minimum value =y=14(0)−4=y=−4 option (B)
Area =1/2×Base×Height
=1/2×8×4=16 sq units
y=f(x)=14x2−4
f(x)=0
⇒14x2−4=0
x24=4
x2=16
x=±4
Integral value being b/w −4,4 are −3,−2,−1,0,1,2,3
=7 values
option- C