wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure vertices of ABC lie on y = f(x)=ax2+bx+c. (vertex lies on y axis). The ABC is right angled isosceles triangle whose hypotenuse AC=8 units, then

879730_8595f90ddead40adb2ebd59f409ea0f2.png

A
y=f(x)=x244
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
minimum value of f(x) is 4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Number of integral values of x lying between the roots of f(x) = 0 are 7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Area of the ABC is 16 sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B minimum value of f(x) is 4
y=f(x)=ax2+bx+c f(x)=2ax+b
AC=8 units
AO=OC=4 units
Coordinates of A(4,0),B(?),C=(4,0)
In ABC
(AC)2=(AB)2+(BC)2
AB=BC ( sides of isosceles triangle)
(AC)2=2(AB)2
64=2(AB)2
(AB)2=32
AB=32
AB=16×2
AB=42 units
Now In AOB,AOB=90o
(AB)2=(OA)2+(OB)2
(A2)2=(4)2+(OB)2
32=16+(OB)2
(OB)2=16
OB=4
Coordinates of B is (0,4)
A,B and C lies on curve ax2+bx+c=f(x)=y........(1)
16a4b+c=0
16a+4b+c=0
c=4
Hence a=1/4,b=0,c=4
put eq (1)
y=f(x)=14x24 option (A)
Minimize e×Δt at point (0,4), [ clear from the figure]
minimum value =y=14(0)4=y=4 option (B)
Area =1/2×Base×Height
=1/2×8×4=16 sq units
y=f(x)=14x24
f(x)=0
14x24=0
x24=4
x2=16
x=±4
Integral value being b/w 4,4 are 3,2,1,0,1,2,3
=7 values
option- C

1442888_879730_ans_5d8492bcfedd4ece8c3feb4913fffacb.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Lines and Points
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon