In the given figure, ∠X=62º,∠XYZ=54º. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of ΔXYZ, find ∠OZY and ∠YOZ.
As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,
∠X+∠XYZ+∠XZY=180º
⇒62º+54º+∠XZY=180º
⇒∠XZY=180º−116º
⇒∠XZY=64º
∠OZY= 642 = 32º (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ=542=27º
Using angle sum property for ΔOYZ, we obtain
∠OYZ+∠YOZ+∠OZY=180º
⇒27º+∠YOZ+32º=180º
⇒∠YOZ=180º−59º
⇒∠YOZ=121º
Hence, ∠OZY=320,∠OYZ=270