CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

In the given figure, ∠X = 62º, ∠XYZ = 54º. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of ΔXYZ, find ∠OZY and ∠YOZ.


Solution

As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,

∠X + ∠XYZ + ∠XZY = 180º

62º + 54º + ∠XZY = 180º

∠XZY = 180º − 116º

∠XZY = 64º

∠OZY = = 32º (OZ is the angle bisector of ∠XZY)

Similarly, ∠OYZ = = 27º

Using angle sum property for ΔOYZ, we obtain

∠OYZ + ∠YOZ + ∠OZY = 180º

27º + ∠YOZ + 32º = 180º

∠YOZ = 180º − 59º

∠YOZ = 121º


Mathematics
Math
Standard IX

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
Same exercise questions
View More


similar_icon
People also searched for
View More



footer-image