In the integral ∫cos8x+1cot2x−tan2xdx=Acos8x+k is an arbitrary constant, then A is equal to
A
−116
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
116
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−116 −∫cos8x+1tan2x−cot2x−∫cos8x+1Sm2xcos2x−cos2xsin2xdx=−∫2sinx.cosx.(cos8x+1)2(sin2x−cos22x)dx=∫sin4x⋅(cos8x+1)−2cos4xdx=12∫tan4x[cos8x+1]dx4x=tdx=14dt=12×4∫tant(cos2t+1)dt=18∫sintxcost(2cos2t−1+1)dt=18∫sin2tdt=18[−cos2t2]+c=−116cos2t+k=Acos8x+k=−116cos8x+kA=−116