In the parabola y2=4 ax, the length of the chord passing through the vertex and inclined to the axis at π4 is
4√2a
Let OP be the chord.
Let the coordinates of P be (x1,y1)
From the figure, we have:
OP2=x21+y21 ...(1)
And,tanπ4=y1x1
⇒ x1=y1 ...(2)
Also,(x1,y1) lies on the parabola.
∴ y21=4ax1 ...(3)
Using (2) and (3) :
x21=4ax1⇒x1=4a ...(4)
∴ From (4),(1) and (2),we have:
OP2=(4a)2+(4a)2=32a2
⇒ OP=4√2a
Therefore,the length of the chord is 4√2a units.