The correct option is
D (4ax−y2)(y2+4a2)=a2c2Let AB be the chord such that |AB|=c.
Let the coordinates of A and B are :
A(at12,2at1) and B(at22,2at2)
If P(h,k) be the middle point of AB, then
(h,k)=(at12+at222,2at1+2at22)
⇒h=at12+at222 and k=2at1+2at22
⇒2ha=t12+t22 and ka=t1+t2
Now,2ha=t12+t22
⇒2ha=(t1+t2)2−2t1t2
⇒2ha=(ka)2−2t1t2
⇒2t1t2=k2a2−2ha
⇒2t1t2=k2−2aha2
⇒t1t2=k2−2ah2a2 and t1+t2=ka
Since |AB|=c
⇒AB2=c2
⇒(at12−at22)2+(2at1−2at2)2=c2
⇒a2(t1−t2)2[(t1+t2)2+4]=c2
⇒a2[(t1+t2)2−4t1t2][(t1+t2)2+4]=c2
⇒a2⎡⎢
⎢⎣k2a2−4(k2−2ah)a2⎤⎥
⎥⎦[k2a2+4]=c2
⇒a2[k2−2k2+4aha2][k2+4a2a2]=c2
⇒(4ah−k2)(k2+4a2)=a2c2
Hence, locus of mid point of AB is (4ax−y2)(y2+4a2)=a2c2 by replacing h→x and k→y