Let point on parabola y2=4ax is P(at2,2t)
Given at2=4a⇒t=±2
Taking positive t, t=2
P(4a,4a)
Equation of tangent at P is 2y=x+4a
If it intersects x-axis at T then T(−4a,0)
Normal at (4a,4a) meets again parabola at
Q(at22,2at2) (using t2=−t1−2t1=−3)
∴Q(9a,−6a)
Now, P(4a,4a),T(−4a,0),Q(9a,6a)
PT=√(4a+4a)2+(4a)2=√80a2
PQ=√(4a+9a)2+(4a+6a)2=√125a2
∴PTPQ=√80a2125a2=45