In the parallelogram ABCD, find x.
50∘
From the figure,
∠DBC = 75∘ (Vertically opposite angles)
∠CDB = 30∘ = ∠DBA (Alternate angles)
∠ABC = ∠DBA + ∠DBC = 30∘ + 75∘ = 105∘
In ΔABC, ∠CAB + ∠ABC + ∠ACB = 180∘ (Angle sum property of a triangle)
25∘ + 105∘ + x = 180∘
130° + x = 180°
x=180∘ - 130∘
x=50∘
Hence, x = 50°