Let C(1,1) divides the line segment AB joining the points A(−2,7) and B(x2,y2) in the ratio 3:2, then using section formula we get,
C=(mx2+nx1m+n,my2+ny1m+n)⇒(1,1)=(3x2+(2×−2)3+2,3y2+(2×7)3+2)⇒(1,1)=(3x2−45,3y2+145)⇒1=3x2−45,1=3y2+145
⇒5=3x2−4,5=3y2+14⇒3x2=5+4,3y2=5−14⇒3x2=9,3y2=−9⇒x2=93,y2=−93⇒x2=3,y2=−3
Hence, the point B(x2,y2) is B(3,−3).