In △ADC, ∠D=900, AD=6 cm and CD=3 cm.
Using pythagoras theorem, we have
AC2=AD2+CD2⇒AC2=62+32⇒AC2=36+9⇒AC2=45⇒AC=√45⇒AC=√32×5⇒AC=3√5
Now, in △ACB, consider AC2+BC2 that is:
AC2+BC2=(3√5)2+62=(9×5)+36=45+36=81=(9)2=AB2
Since AC2+BC2=AB2, therefore △ACB is a right angled triangle.
Hence, ∠ACB=900.