The correct option is
B →v=(m1→v1+m2→v2)(m1+m2)Here, two particles travel along the
x axis in the reference frame
K, one of mass
m1 with velocity
→v1, and the other of mass
m2 with velocity →v2.
Let, →v be the velocity of the reference frame K′ and E1 and E2 be the kinetic energies for particles in this frame
E1=12m1(→v−→v1)2 and E2=12m2(→v−→v2)2
Now, E=E1+E2
E=12m1(→v−→v1)2+12m2(→v−→v2)2
E=12[m1→v2−2m1v→v1+m21→v12+m2→v2−2m2v→v2+m22→v22]
E=12[→v2(m1+m2)−2→v(m1→v1)+m1→v12+m2→v22
Differentiating with respect to v we get,
dEdv=12[2→v(m1+m2)−2(m1→v1+m2→v2)]
Since, reference frame K′ is moving with respect to frame K and the cumulative kinetic energy of two particles is minimum there hence,
dEdv=0
12[2→v(m1+m2)−2(m1→v1+m2→v2)]=0
→v(m1+m2)=m1→v1+m2→v2
→v=m1→v1+m2→v2m1+m2