In the rhombus ABCD, Side AD = 12 cm and ∠B is 135∘ as shown in figure. The height (DE) and the area of the rhombus will be equal to
6√2 cm,72√2 cm2
Given ABCD is a rhombus
AB=CD=AD=CB , ∠B=135∘ and ∠A=45∘
then ∠ADE=(180∘−135∘)=45∘
Angle of ΔADE are 45∘,45∘,90∘
⇒sin(45):sin(45):sin(90)
⇒1√2:1√2:1
⇒1:1:√2
So, the sides AE, ED, AD will be in the ratio 1:1:√2
The corresponding sides will be calculated as
45∘45∘90∘1:1:√2x:x:x√2AEEDAD↓↓↓6√2cm6√2cm12cm
(x√2=12 ⇒ x=12√2 =6√2)
The distance between parallel lines is ED=6√2cm
Area of rhombus will be equal to AB×DE=12×6√2
=72√2cm2