In the tetrahedron ABCD, A=(1,2,−3) and G(−3,4,5) is the centroid of the tetrahedron. If P is the centroid of the ΔBCD, then AP=
Given, A=(1,2,−3),G(−3,4,5)
Therefore, AG=√(−3−1)2+(4−2)2+(5−(−3))2
and AG=√84=2√21
P is the centroid of △BCD
So, G divides AP in 3:1.
Let AG=3x, then GP=x
3x=2√21x=2√213
Now AP=AG+GP
⇒AP=3x+x
⇒AP=4x
⇒AP=4(2√213)=8√213
So, option A is correct.