Given
∠ACE=130o∠ACE+∠ACD=180o∠ACD=180o−130o=50oGiven ,
AD=CD Hence, ∠CAD=∠ACD=50 (Isosceles triangle Property)
∠ADC+∠CAD+∠ACD=180o (Angle sum property)
∠ADC+50o+50o=180o
∠ADC=80∘
Now, ∠ADC+∠ADB=180 (Angles on a straight line)
80+∠ADB=180o
∠ADB=100∘
Given, AD=BD, thus, ∠DBA=∠BAD
In △ABD,
∠ADB+∠DBA+∠BAD=180o
100+x+x=180o
2x=80o
∴x=40o
Hence, ∠DBA or ∠ABC=40∘