To prove : PQ2=4PM2−3PR2
Proof :-
In ΔPRM
PM2=PR2+RM2 (Pythagoras theorem) ⟶(1)
Also,
In ΔPQR
PQ2=PR2+RQ2
=PR2+(RM+MQ)2
=PR2+(RM+RM)2 (∵RM=MQ)
=PR2+4RM2⟶(2)
From (1),
RM2=PM2−PR2⟶(3)
Putting (3) in (2) we get
PQ2=PR2+4(PM2−PR2)
PQ2=PR2+4PM2−4PR2
PQ2=4PM2−3PR2
Hence proved.