In this figure, the centre of the circle is O. AB⊥BC, ADOE is a straight line, ¯¯¯¯¯¯¯¯AP=¯¯¯¯¯¯¯¯¯AD and AB has a length twice the radius. Then:
A
¯¯¯¯¯¯¯¯¯¯¯AP2=¯¯¯¯¯¯¯¯PB.¯¯¯¯¯¯¯¯AB
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯¯¯¯¯¯¯¯AP.¯¯¯¯¯¯¯¯¯DO=¯¯¯¯¯¯¯¯PB.¯¯¯¯¯¯¯¯¯AD
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯¯¯¯¯¯¯¯¯¯AB2=¯¯¯¯¯¯¯¯¯AD.¯¯¯¯¯¯¯¯¯DE
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯¯¯¯¯¯¯¯AB.¯¯¯¯¯¯¯¯¯AD=¯¯¯¯¯¯¯¯OB.¯¯¯¯¯¯¯¯AO
No worries! We‘ve got your back. Try BYJU‘S free classes today!
E
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯¯¯¯¯¯¯¯¯¯¯AP2=¯¯¯¯¯¯¯¯PB.¯¯¯¯¯¯¯¯AB Since AB is tangent to the circle, we have ¯¯¯¯¯¯¯¯¯AD|¯¯¯¯¯¯¯¯AB=¯¯¯¯¯¯¯¯AB|¯¯¯¯¯¯¯¯AE, ¯¯¯¯¯¯¯¯¯¯AB2=¯¯¯¯¯¯¯¯¯AD.¯¯¯¯¯¯¯¯AE. But ¯¯¯¯¯¯¯¯AE=¯¯¯¯¯¯¯¯¯AD+2r=¯¯¯¯¯¯¯¯¯AD+¯¯¯¯¯¯¯¯AB; ∴¯¯¯¯¯¯¯¯¯¯AB2=¯¯¯¯¯¯¯¯¯AD(¯¯¯¯¯¯¯¯¯AD+¯¯¯¯¯¯¯¯AB)=¯¯¯¯¯¯¯¯¯¯¯AD2+¯¯¯¯¯¯¯¯¯AD.¯¯¯¯¯¯¯¯AB ∴¯¯¯¯¯¯¯¯¯¯¯AD2=¯¯¯¯¯¯¯¯¯¯AB2−¯¯¯¯¯¯¯¯¯AD.¯¯¯¯¯¯¯¯AB=¯¯¯¯¯¯¯¯AB(¯¯¯¯¯¯¯¯AB−¯¯¯¯¯¯¯¯AP)=¯¯¯¯¯¯¯¯AB.¯¯¯¯¯¯¯¯PB. Since ¯¯¯¯¯¯¯¯AP=¯¯¯¯¯¯¯¯¯AD,¯¯¯¯¯¯¯¯¯¯¯AP2=¯¯¯¯¯¯¯¯AB(¯¯¯¯¯¯¯¯AB−¯¯¯¯¯¯¯¯AP)=¯¯¯¯¯¯¯¯AB.¯¯¯¯¯¯¯¯PB.