In △DFG and △DAB, we have
∠1=∠2 [∵AB||DC||EF∴∠1 and ∠2 are corresponding angles]
∠FDG=∠ADB [Common]
So, by AA-criterion of similarity, we have
∴ △DFG∼△DAB
⇒ DFDA=FGAB.......(i)
In trapezium ABCD, we have
EF||AB||DC
∴ AFDF=BEEC
⇒ AFDF=34
[∵BEEC=34(Given)]
⇒ AFDF+1=34+1 [Adding 1 on both sides]
⇒ AF+DFDF=74
⇒ ADDF=74
⇒ DFAD=47......(ii)
From (i) and (ii), we get
FGAB=47
⇒ FG=47AB........(iii)
In △BEG and △BCD, we have
∠BEG=∠BCD [Corresponding angles]
∠B=∠B [Common]
∴ △BEG∼△BCD [By AA-criterion of similarity]
⇒ BEBC=EGCD
⇒ 37=EGCD [∵BEEC=34⇒ECBE=43⇒ECBE+1=43+1⇒BCBE=73]
⇒ EG=37CD
⇒ EG=37×2AB
⇒ EG=67×AB
Adding (iii) and (iv), we get
FG+EG=47AB+67AB
⇒ EF=107AB
⇒ 7EF=10AB [Hence proved]