In trapezium ABCD, M∈¯¯¯¯¯¯¯¯¯AD,n∈¯¯¯¯¯¯¯¯BC are the points such that AMMD=BNNC=23. The diagonal ¯¯¯¯¯¯¯¯AC intersects ¯¯¯¯¯¯¯¯¯¯¯MN at O. Then find the value of AOAC.
Open in App
Solution
In □ABCD,¯¯¯¯¯¯¯¯AB||¯¯¯¯¯¯¯¯¯CD, M and N are the points on transversals ←→AD and ←→BC respectively Also, AMMD=BNNC ∴←−→MN||←→AB and ←→AB||←→CD ←−→MN intersects ←→AC at O. ∴ In ΔADC,←−→MO||←→DC,Mε¯¯¯¯¯¯¯¯¯AD,Oε¯¯¯¯¯¯¯¯AC ∴AMMD=AOOC But AMMD=23 ∴AOOC=23 ∴AOAO+OC=22+3 ∴AOAC=25