∠C=π2⇒a2+b2=c2
Clearly, |x|≤1.
Also, a2x2c2+b2x2c2=x2≤1
sin−1x=sin−1(axc)+sin−1(bxc)
⇒sin−1x=sin−1(axc√1−b2x2c2+bxc√1−a2x2c2)
⇒x=axc2√c2−b2x2+bxc2√c2−a2x2
⇒x=0
or c2=a√c2−b2x2+b√c2−a2x2
⇒c4=a2(c2−b2x2)+b2(c2−a2x2)+2ab√(c2−b2x2)√(c2−a2x2)
⇒c4=(a2+b2)c2−2a2b2x2+2ab√(c2−b2x2)(c2−a2x2)
⇒abx2=√c4−c2(a2+b2)x2+a2b2x4
⇒a2b2x4=c4−c4x2+a2b2x4⇒x2=1
∴x=1,−1
Total number of different values of x is three, namely x=0,1,−1