In triangle ABC; 1−(tanB2 tanC2) is equal to -
We have,
1−tanB2tanC2
=1−√(s−a)(s−c)s(s−b)√(s−a)(s−b)s(s−c)
=1−√(s−a)(s−c)(s−a)(s−b)s(s−b)s(s−c)
=1−s−as
=1−a+b+c2−aa+b+c2
=1−a+b+c−2a2a+b+c2
=1−a+b+c−2aa+b+c
=a+b+c−a−b−c+2aa+b+c
=2aa+b+c
In triangle ABC, 1−tanB2.tanC2 is equal to