In △ABC,a≥b≥c,if a3+b3+c3sin3A+sin3B+sin3C=8, then the maximum value of a is
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
64
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2 By Sine Rule, a=2RsinA,b=2RsinB,c=2RsinC where k=2R Substituting a=ksinA,b=ksinB,c=ksinC in a3+b3+c3sin3A+sin3B+sin3C=8 ⇒(ksinA)3+(ksinA)3+(ksinA)3sin3A+sin3B+sin3C=8 ⇒k3(sin3A+sin3B+sin3C)sin3A+sin3B+sin3C=8 ⇒k3=8 ∴k=2 Hence, a=ksinA=2sinA≤2