The correct option is A AD=BC
Given: ∠A=36∘ and AB=AC
Since, AB=AC
∠B=∠C=x ...(Isosceles triangle property)
In △ABC
∠A+∠B+∠C=180
36+x+x=180
x=72∘
∠B=∠C=72∘
Since, CD bisects ∠C
∠BCD=∠ACD=12∠C=36∘
Now, In △BDC,
∠B+∠BCD+∠BDC=180 ...(Angle sum property)
72+36+∠BDC=180
∠BDC=72∘
Thus, ∠BDC=∠B=72∘
Hence, BC=CD ...(Isosceles triangle property) (1)
In△ADC
AD=CD( isosceles triangle property) (2)
From (1) and (2)
AD=BC