In ΔABD,
AB2=BD2+AD2 --(1)
In ΔADC,
AC2=CD2+AD2 --(2)
Adding (1) and (2),
AB2+AC2=2AD2+BD2+CD2...........(8)
BD2=BE2+ED2+2BE.ED --(3)
CD=EC−EDCD2=EC2+ED2−2EC.ED --(4)
Adding (3) and (4),
BD2+CD2=BE2+EC2+2ED2+2BE.ED−2EC.ED
=BE2+EC2+2ED2+2ED(BE−EC)
=2BE2+2ED2 ....[∵BE=EC]
In ΔAED,
AE2=ED2+AD2ED2=AE2−AD2BD2+CD2=2BE2+2AE2−2AD2.........................(5)
From (5) +(8),
AB2+AC2=2AD2+2BE2+2AE2−2AD2
=2BE2+2AE2
Hence proved.