wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC,AB>AC.E is the mid-point of BC and AD is perpendicular to BC. Prove that:
AB2+AC2=2AE2+2BE2
183789.jpg

Open in App
Solution

In ΔABD,
AB2=BD2+AD2 --(1)

In ΔADC,
AC2=CD2+AD2 --(2)

Adding (1) and (2),
AB2+AC2=2AD2+BD2+CD2...........(8)

BD2=BE2+ED2+2BE.ED --(3)
CD=ECEDCD2=EC2+ED22EC.ED --(4)

Adding (3) and (4),
BD2+CD2=BE2+EC2+2ED2+2BE.ED2EC.ED
=BE2+EC2+2ED2+2ED(BEEC)
=2BE2+2ED2 ....[BE=EC]

In ΔAED,
AE2=ED2+AD2ED2=AE2AD2BD2+CD2=2BE2+2AE22AD2.........................(5)

From (5) +(8),
AB2+AC2=2AD2+2BE2+2AE22AD2
=2BE2+2AE2

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon