In △ABC, AD is the bisector of ∠A. If BC=10cm, BD=6cm and AC=6cm, find AB.
In a ΔABC, AD is the bisector of ∠A.
(i) If AB = 6.4 cm, AC = 8 cm and BD = 5.6 cm, find DC.
(ii) If AB = 10 cm, AC = 14 cm and BC = 6 cm, find BD and DC.
(iii) If AB = 5.6 cm, BD = 3.2 cm and BC = 6 cm, find AC.
(iv) If AB = 5.6 cm, AC = 4 cm and DC = 3 cm, find BC.
In a ΔABC, AD is the bisector of ∠A, meeting side BC at D. (i) If BD= 2.5 cm, AB = 5 cm and AC = 4.2 cm, find DC. (ii) If BD= 2 cm, AB = 5 cm and DC = 3 cm, find AC. (iii) If AB= 3.5 cm, AC = 4.2 cm and DC = 2.8 cm, find BD. (iv) If AB =10 cm, AC =14 cm and BC = 6 cm, find BD and DC. (v) If AC = 4.2 cm, DC = 6 cm and BC = 10 cm, find AB. (vi) If AD= 5.6 cm, AC = 6 cm and DC = 3 cm, find BC. (vii) If AB= 3.6 cm, BC e 6 cm and BD = 32 cm, find AC. (viii) If AB =10 cm, AC = 6 cm and BC = 12 cm, find BD and DC