In triangle ABC,∠A=∠B=30∘,AB=18cm as shown in figure. The perimeter of the triangle will be to equal to
(12√3+18)cm
Draw CD perpendicular to AB
In ΔACD & ΔBCD
∠CAD=∠CBD (each 30∘) (Given)
∠CDA=∠CDB (each 90∘) (CD perpendicular to AB)
CD=CD (common)
ΔACD≅ΔBCD
AD=DB=9cm (Corresponding sides of congruent triangle )
In right -angled triangle ACD, the angles are 30∘,60∘,90∘
The corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘x:x√3:2x↓↓↓CDADAC↓↓↓3√3 cm9 cm6√3 cm
AC = CB (Corresponding sides of congruent triangle)
Perimeter of triangle =AC+CB+AB
6√3cm+6√3cm+18
12√3+18cm