In triangle ABC, ∠A=π2, then tan(C2) is equal to
It is given that it is
right angled triangle, right angled at A.
Hence
sinC=ca
And
cosC=ba
Hence
tanC=cb
Or
tan(C)=2tan(C2)1−tan2(C2)
Or
cb=2tan(C2)1−tan2(C2)
c−ctan2(C2)=2btan(C2)
Or
ctan2(C2)+2btan(C2)−c=0
tan(C2)=−2b±√4c2+4b22c
Now
b2+c2=a2
Hence
tan(C2)=a−bc considering
(tan(A2)>0)