Consider, right angled △BCQ
⇒ BC2=CQ2+BQ2 [By Pythagoras theorem]
⇒ BC2=CQ2+(AB+AQ)2 [Since BQ = AB + AQ]
⇒ BC2=[CQ2+AQ2]+AB2+2AB×AQ ----- (2)
In right △ACQ, CQ2+AQ2=AC2 [By Pythagoras theorem]
Hence equation (2) becomes,
⇒ BC2=AC2+AB2+AB×AQ+AB×AQ
⇒ BC2=AC2+AB2+AB×AQ+AP×AC [From (1)]
⇒ BC2=AC2+AP×AC+AB2+AB×AQ
⇒ BC2=AC(AC+AP)+AB(AB+AQ)
⇒ BC2=AC×CP+AB×BQ [From the figure]
Hence Proved.