1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identity- 3
In ABC,∠ AB...
Question
In
△
A
B
C
,
∠
A
B
C
=
135
o
. prove that
A
C
2
=
A
B
2
+
B
C
2
+
4
A
(
△
A
B
C
)
Open in App
Solution
From cosine formula we know that
cos
B
=
A
B
2
+
B
C
2
−
A
C
2
2
A
B
.
B
C
cos
135
0
=
A
B
2
+
B
C
2
−
A
C
2
2
A
B
.
B
C
=
−
1
√
2
⟹
A
B
2
+
B
C
2
−
A
C
2
=
−
√
2
A
B
.
B
C
⟹
A
C
2
=
A
B
2
+
B
C
2
+
√
2
A
B
.
B
C
Now, we know area of triangle
A
(
Δ
A
B
C
)
=
1
2
A
B
.
B
C
sin
B
⟹
A
(
Δ
A
B
C
)
=
1
2
A
B
.
B
C
sin
135
o
⟹
A
(
Δ
A
B
C
)
=
1
2
A
B
.
B
C
1
√
2
⟹
A
B
.
B
C
=
2
√
2
A
(
Δ
A
B
C
)
Hence
A
C
2
=
A
B
2
+
B
C
2
+
√
2
×
2
√
2
A
(
Δ
A
B
C
)
⟹
A
C
2
=
A
B
2
+
B
C
2
+
4
A
(
Δ
A
B
C
)
Suggest Corrections
1
Similar questions
Q.
In
△
A
B
C
,
m
∠
B
=
90
o
. Prove that
A
C
2
=
A
B
2
+
B
C
2
.
Q.
In ∆ABC, ∠ABC = 135°. Prove that AC
2
= AB
2
+ BC
2
+ 4 ar (∆ABC)