wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC,ABC=135o. prove that
AC2=AB2+BC2+4A(ABC)

Open in App
Solution



From cosine formula we know that

cosB=AB2+BC2AC22AB.BC

cos1350=AB2+BC2AC22AB.BC=12

AB2+BC2AC2=2AB.BC

AC2=AB2+BC2+2AB.BC

Now, we know area of triangle A(ΔABC)=12AB.BCsinB

A(ΔABC)=12AB.BCsin135o

A(ΔABC)=12AB.BC12

AB.BC=22A(ΔABC)

Hence
AC2=AB2+BC2+2×22A(ΔABC)

AC2=AB2+BC2+4A(ΔABC)


865478_875538_ans_17dce3d0e03d4554bc751b5abcd90f1a.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon