The correct option is
A 36oGiven,
∠A+∠B=144 ...
(I)Also,
∠A+∠C=124 ...
(II).
In △ABC,
∠A+∠B+∠C=180o ..... [By angle sum property].
Add (I) and (II),
∠A+∠B+∠A+∠C=144o+124o.
Substitute (I),
180o+∠A=268o
⟹ ∠A=268o−180o
⟹ ∠A=88o ...(III).
Substitute (III) in (I),
∠A+∠B=144o
⟹ 88o+∠B=144o
⟹ ∠B=56o ...(IV).
Substitute (III) in (II),
∠A+∠C=124o
⟹ 88o+∠C=124o
⟹ ∠C=36o ...(V).
From (III), (IV) and (V),
we get, the smallest angle of the △ABC is ∠C=36o.
Hence, option A is correct.