In triangle ABC, ∠B=30∘ and ∠C=45∘. If AB =4 cm, then find the length of CD.
2 cm
In triangle ABD, ∠B=30∘,∠DAB=180−(90+30∘)=60∘
Therefore, angles of triangle ABD are 30∘,60∘,90∘,
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
so, the corresponding sides will be in the ratio 1:√3:2.
30∘60∘90∘1:√3:2↓↓↓ADBDAB↓↓↓2 cm2√3 cm4 cm
AD = 2 cm
In ΔADC,∠DCA=45∘, angle CAD =180∘−(90∘+45∘)=45∘
Therefore, angles of triangle ADC are 45∘,45∘,90∘,
So, the corresponding sides will be in ratio 1:1:√2.
45∘45∘90∘1:1:√2↓↓↓ADDCAC↓↓↓2 cm2 cm2√2 cm
AD = DC = 2 cm