In △ABC, ∠B=90∘.
If tan A=1√3, then
sin A.cos C+cos A.sin C =
and, cos A.cos C−sin A.sin C=
Given tan A=1√3, and ∠B=90∘ in △ABC.
We know that tan 30∘=1√3
∴∠A=30∘
Now, ∠A+∠B+∠C=180∘
⇒∠C=180∘−∠B−∠A=180∘−30∘−90∘=60∘
Now, sin A=sin 30∘=12
cos A=cos 30∘=√32
sin C=sin 60∘=√32
cos C=cos 60∘=12
The first expression:
sin A cos C + cos A sin C
=12×12+√32×√32
=14+34=44=1
The second expression,
cos A cos C - sin A sin C
=√32×12+√32×12
=√34−√34=0