wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC,BAC=90, and AD is its bisector. If DE is drawn AC, prove that DE×(AB+AC)=AB×AC.

Open in App
Solution

Given:ABCinwhichBAC=90,ADisthebisector.AlsoDEACToProve:DE×(AB+AC)=AB×AC.Proof:ItisgiventhatADisthebisectorofAofABCABAC=BDDC(ByAngleBisectorTheorm)ABAC+1=BDDC+1[Adding1onbothsides]AB+ACAC=BD+DCDCAB+ACAC=BCDC.........(1)InCDEandCBA,wehaveDCE=BCA[Common]DEC=BAC[Eachequalto90So,byAAcriterionofsimilarityCDECBACDCB=DEBA(ByAngleBisectortheorm)ABDE=BCDC.....(2)From(1)and(2)wehaveAB+ACAC=ABDEDE×(AB+AC)=AB×AC.HenceProved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon