REF. Image.
Given
to solve the equation
(b2−c2)cotA+(c2−a2)cotB+(a2−b2)cotC.
Let us consider properties of triangle in
triagonometry. as per that we know,
⇒sinAa=sinBb=sinCc=K [ where 'K' is constant]
∴ sin A = ak, sin B = bk, sin C = ck.
and also we know that,
cosA=b2+c2−a22bc,cosB=c2+a2−b22ac,cosC=a2+b2−c22ab
∵cotθ=cosθsinθ, Let us apply cot with the above propeties.
∴ we get, cotA=b2+c2−a22abck,cotB=c2+a2−b22abck, and
cotC=a2+b2−c22abck
Now, let us substtiude the above obtained values in the given equation, there by we get,
⇒(b2−c2)b2+c2−a22abck+(c2−a2)c2+a2−b22abck+(a2−b2)a2+b2−c22anck
⇒12abck[(b2−c2)(b2+c2−a2)+(c2−a2)(c2+a2+b2)+(a2−b2)(a2+b2−c2)]
∴ Let us simplify it further, we get
⇒12abck[b4+b2c2−a2b2−c4b2−c4+a2c2+c4+a2c2−b2c2−a2c2−a4+a2b2+a4+a2b2−a2c2−a2b2−b4+b2c2]
⇒12abck(0)=0
∴(b2−c2)cotA+(c2−a2)cotB+(a2−b2)cotC=0