In △ABC, B is a right angle, and BD is perpendicular to AC and DE is perpendicular to BC. Then AD.DC=
BD2
BE.BC
In △ABD and △BDC
∠ADB=∠BDC=90∘
∠A=∠DBC [Since, in △BDC, ∠DBC=90∘−∠C=∠A and in △ABC, ∠A=90∘−∠C]
Therefore, △ADB∼△BDC [by AA similarity]
ADDB=BDDC=ABBC⇒BD2=AD.DC
Similarly, △BDC∼△BED
∠DBC=∠DBE [Common angle]
∠BDC=∠DEB [90∘]
BDBE=DCED=BCBD⇒BD2=BE.BC
⇒BD2=AD.DC=BE.BC