In △ABC, B is a right angle, and BD is perpendicular to AC and DE is perpendicular to BC. Then AD×DC = ?
BD2
BE×BC
In △ABD and △BDC
∠ADB=∠BDC=90∘
∠A=∠DBC (Since in △BDC,∠DBC=90∘−∠C=∠A
and in △ABC∠A=90∘−∠C)
Therefore, △ADB∼△BDC by AA similarity
ADDB=BDDC=ABBC
⇒BD2=AD.DC
∠DBC=∠DBE (Common angle)
∠BDC=∠DEB=90∘
Similarly △BDC∼△BED
⇒ BDBE=DCED=BCBD
⇒BD2=BE×BC⇒BD2=AD×DC=BE×BC