In △ABC, B is a right angle, and BD is perpendicular to AC and DE is perpendicular to BC. Then which of the following is true?
ED2 × DC = EC2 × AD
In △ABC and △BDC
∠ABC=∠BDC=90∘
∠C=∠C (common angle)
Therefore, △ABC∼△BDC by AA similarity
BCDC=ACBC⇒BC2=AC× DC ------------------------------------ I
Similarly △BDC∼△DEC
Therefore DCEC=BCDC⇒DC2=EC× BC
BC=DC2EC ------------------------------------------------------------------------------II
Substitute II in I
DC4EC2=AC× DC
DC3=EC2× AC
DC2× DC=EC2× (AD+DC)
(EC2+ED2)× DC=EC2(AD+DC)(DC2=EC2+ED2)
Therefore, ED2× DC=EC2× AD