In triangle ABC, BD is the perpendicular bisector of BC meets AC in point D the BD is angle bisector of angle ABC if AD=9 DC=7 then find the area of triangle ABD.
Open in App
Solution
ΔBDC, D is vertex and lies on ⊥ trisector ∴ΔBDC is isoceles ⇒ BD = DC = 7 Let C=x⇒∠DBC=x ⇒∠ABD=x (since BD is angular bisector) ∴∠ADB=2x ΔABD and ΔACB are similar ∵∠ADB=∠ABC=2x ∠DBA=∠BCD=∠BCA=x ∴ABBC=ADAB AB16=9AB⇒AB2=16×9 or AB=4×3=12 ∴ Area of Δ ABD using Heron's formula (sides 12,7,9) =√282(14−12)(14−7)(14−9)=√14×2×7×5=14√5sq.units