In a triangle, the sum of interior angle =180∘
Thus, in △ABC ,
∠A+∠B+∠C=180∘
∠C=70∘,
Hence,
∠A+∠B=130∘
Bisector of ∠A and∠B intersect at point O then
∠A2+∠B2=65∘
∠OAB+∠OBA=65∘
Now, in △OAB,
∠OAB+∠OBA+∠AOB=180∘
⇒∠AOB=115∘
In a quadrilateral ABCD, bisectors of A and B intersect at O such that ∠AOB=75∘, then write the value ∠C+∠D.