In △ABC, circumradius, R=3. Let O be the circumcentre and H be the orthocentre, then the value of 164(AH2+BC2)(BH2+AC2)(CH2+AB2) is 3k, where k is
Open in App
Solution
In △AEH,cos(90−C)=AEAH⇒sinC=AEAH⇒AH=AEsinC
In △ABEcosA=AEc⇒AE=ccosA∴AH=ccosAsinC⇒AH=2RsinCcosAsinC=2RcosA
Similarily BH=2RcosB and CH=2RcosC
Now, 164(AH2+BC2)(BH2+AC2)(CH2+AB2)=3k164((2RcosA)2+(2RsinA)2)((2RcosB)2+(2RsinB)2)((2RcosC)2+(2RsinC)2)=3k ⇒164(64R6)=3kR6=3k
since R=3⇒k=6