The correct option is
B 12In △ABC,
(I) E and F are the mid-points of side AC and AB respectively.
Therefore, EF∥BC and EF=12BC (Mid-point theorem)
However, BD=12BC(D is the mid-point of BC)
Therefore, BD=EF and BD∥EF
Therefore, BDEF is a parallelogram.
(ii) Using the result obtained above, it can be said that quadrilaterals BDEF,DCEF,AFDE are parallelograms.
We know that diagonal of a parallelogram divides it into two triangles of equal area.
∴ Area (ΔBFD)= Area (ΔDEF) (For parallelogram BDEF)
Area (ΔCDE)= Area ( △DEF) (For parallelogram DCEF)
Area (△AFE)= Area ( △DEF) (For parallelogram AFDE)
∴ Area (ΔAFE)= Area (ΔBFD)= Area (ΔCDE)= Area (ΔDEF)
Also, Area (ΔAFE)+ Area (ΔBDF)+ Area (ΔCDE)+ Area (ΔDEF)= Area (ΔABC)
⇒ Area (ΔDEF)+ Area (ΔDEF)+ Area (ΔDEF)+ Area (ΔDEF)= Area (ΔABC)
⇒4 Area (ΔDEF)= Area (ΔABC)
⇒ Area (ΔDEF)=14 Area (△ABC)
(iii) Area (parallelogram BDEF) = Area ( ΔDEF ) + Area ( △BDF )
⇒ Area (parallelogram BDEF) = Area ( ΔDEF ) + Area ( △DEF )
⇒ Area (parallelogram BDEF) =2 Area ( ΔDEF)
⇒ Area (parallelogram BDEF) =2×14 Area ( ΔABC)
⇒ Area (parallelogram BDEF) =12 Area ( ΔABC)
So, B is the correct option.