In △ABC, D is mid point of BC. Then, AB2+AC2=2(............)
A
CD2+AC2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
AD2+CD2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
AD2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
CD2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BAD2+CD2 BD=DC AE=EC⇒AC=12EC ....DE||AB DE=AB2 In △CED,DC2=DE2+EC2 ⇒4DC2=AC2+AB2 AB2+AC2=2CD2+2CD2 In △ADE,AD2=AE2+DE2,AE2+DC2−EC2 ⇒AD2=DC2 ∴2CD2=2AD2 Then, AB2+AC2=2(CD2+AD2)