Given that:- In △ABC in Which D is the mid point of AB,PD||CQ
Construction:- Join C to D and Q to P.
Proof:- CD is median of the △ ABC.
∴ ar (△ BCD) = ar (△ DAC)
In the figure.
△PDC and △PDQ are on the same base PQ and between the same paralels PD and CQ.
∴ ar (△ PDC) = ar (△ PDQ)
⇒ ar (BCD) = 12ar (ABC)
⇒ ar (BPD)+ar (PDC)=12ar (ABC)
⇒ ar (BPD)+ar (PDQ)=12ar (ABC)
Hence,
ar(BPQ)=12ar(ABC)
Hence Proved.