r1bc=4RsinA2cosB2cosC22RsinB⋅2RsinC
=sinA24RsinB2sinC2
=sin2A24RsinA2sinB2sinC2=sin2A2r
∴r1bc+r2ca+r3ab=1r(sin2A2+sin2B2+sin2C2)
=12r(1−cosA+1−cosB+1−cosC)
=12r[3−(cosA+cosB+cosC)]
=12r[3−(1+4sinA2sinB2sinC2)]
=12r[2−rR]=1r−12R