The correct options are
A cotA2cotC2=3
B cotA2+cotC2=2cotB2
cosA+2cosB+cosC=2
⇒cosA+cosC=2(1−cosB)
cosA+cosC=4sin2B2
⇒cos(A+C2).cos(A−C2)=2sin2B2
⇒cos(A+C2).cos(A−C2)=2cos2(A+C2)
⇒cos(A−C2)cosA+C2=21
Applying componendo and dividendo, we get
⇒cos(A−C2)+cos(A+C2)cos(A−C2)−cos(A−C2)=2+12−1
⇒cotA2.cotC2=31 .....(1)
We know that
cotA2+cotB2+cotC2=cotA2cotB2cotC2
⇒cotA2+cotC2=cotB2(cotA2.cotC2−1)
⇒cotA2+cotC2=2cotB2 (by (1))