In △ABC, if 3∠A=4∠B=6∠C, calculate A,B,C.
Given:
In △ABC
3∠A=4∠B=6∠C
Let 3∠A=4∠B=6∠C=x
⇒∠A=x3, ∠B=x4, ∠C=x6
Since, the sum of the angles of triangle is 180∘.
⇒x3+x4+x6=180∘
⇒4x+3x+2x12=180∘
⇒9x12=180∘
⇒x=180∘×129
⇒x=20∘×12
⇒x=240∘
Now,
∠A=x3=240∘3=80∘
∠B=x4=240∘4=60∘
∠C=x6=240∘6=40∘