∠A=75o,∠B=45o⇒∠C=180o−∠A−∠B
=180o−75o−45o
=180o−120o=60o
Using sin rule
asinA=bsinB=CsinC
⇒asin75o=bsin45o=csin60o
⇒a√3+12√2=b1√2=c√32
⇒(2√2)a√3+1=√2b=2c√3
⇒b=2√2a√2(√3+1)=2a√3+1
and c=(2√2)a√3+1×√32=√6a√3+1
None L.H.S =b+c√2
=2a√3+1+√6a√3+1×√2
=2a+2√3a√3+1
=2a(1+√3)√3+1=2a=R.H.S.