wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

In ABC, if acosA=bcosB, then prove that the triangle is either a right-angled or an isosceles triangle.

Open in App
Solution

acosA=bsinB(1)
sinerule=>asinA=bsinB=k(let)
=>a=ksinA;b=ksinB
=>puttingin(1)
=>ksinAcosA=ksinBcosB
=>sinAcosA=sinBcosB
(sin2θ=2sinθcosθ)
=>sin2A2=sin2B2
=>sin2Asin2B=0
sin2Asin2B=2cos(2A+2B2)sin(2A2B2)=0
=>2cos(A+B)sin(AB)=0(2)
=>Eithercos(A+B)=0
=>A+B=90
C=180AB
=90
ABCwillberightangledatC
or
sin(AB)=0
=>AB=0
=>A=B
ABCisisoscelesas2anglesareequal.
Henceproved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon